
Section 14. Metallic liquids and glasses

Dynamic structure factor of liquid mercury

L.E. Bove a,b,*, F. Sacchetti a,b, C. Petrillo c,d, B. Dorner e, F. Formisano f,
M. Sampoli g,h, F. Barocchi g,h

a Istituto Nazionale per la Fisica della Materia, Unit�aa di Perugia, Perugia, Italy
b Dipartimento di Fisica, Universit�aa di Perugia, Via A. Pascoli, I-06123 Perugia, Italy

c Istituto Nazionale per la Fisica della Materia, Unit�aa di Milano Politecnico, Milan, Italy
d Dipartimento di Fisica, Politecnico di Milano, Milan, Italy

e Institut Laue Langevin, B.P. 156, Grenoble, France
f Istituto Nazionale per la Fisica della Materia, OGG-Grenoble, Grenoble, France
g Istituto Nazionale per la Fisica della Materia, Unit�aa di Firenze, Florence, Italy

h Dipartimento di Fisica, Universita’ di Firenze, Florence, Italy

Abstract

The low momentum dynamics of liquid mercury has been investigated by means of inelastic neutron scattering and

molecular dynamics (MD) simulations. Due to the rather high incoherent cross-section and the high mass of mercury,

the measured dynamic structure factor is dominated by the self-correlation function which has been studied in details.

The low momentum collective dynamics are also made accessible by the very good energy resolution of the experiment.

Collective modes are clearly visible against the incoherent scattering up to a momentum transfer of 0.6 �AA�1. The self-

dynamics, as resulting from either the experiment and MD simulations, turn out to be characterized by two time

scales.

� 2002 Published by Elsevier Science B.V.
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1. Introduction

The investigation of the dynamic properties of
liquid metals has been constantly addressed over
the years because of that richness of features in
the excitation spectra and in the self-motion which
enable to test different theories of the liquid state.
In particular, liquid metals microdynamics cannot

be simply interpreted by extending the description
of the liquid from classical hydrodynamics [1].
Among liquid metals, the properties of molten
alkali-metals have been largely studied by both
inelastic scattering experiments [2–7] and molecu-
lar dynamics (MD) simulations [8–12] based on
effective ion-pair potentials, like, for instance, that
given by Price, Singwi and Tosi (PST potential)
[13,14]. Indeed, the treatment of low electron den-
sity systems with a free-electron-like structure is
simplified by the possibility of modeling the elec-
tron component by an interacting homogeneous
electron gas at the suitable density. The results of
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these investigations show that systems quite dif-
ferent as to atomic mass and number density, all
sustain density fluctuation modes characterized by
a rather long lifetime and a dispersion relation
extending up to a momentum transfer well outside
the hydrodynamic regime.

A previous experimental study of liquid lead
[15] has shown that long living collective excita-
tions exist also in this polyvalent metal. This find-
ing, coupled to the findings in alkali-metals,
suggests that the interatomic interactions in simple
and polyvalent liquid metals strongly favor the
presence of long living collective excitations. How-
ever, due to the limited experimental data available
on these systems, this statement cannot be con-
sidered as a definitive one. In this scenario, the
study of the dynamics of a high-electron-density
system would be fundamental to clarify the effects
of strongly density dependent ion–ion interactions
on microscopic dynamics. Mercury, which has a
high-electron density and a rather low sound ve-
locity, which enables inelastic neutron scattering
measurements to be performed without tight cin-
ematic constraints, is a particularly attractive sys-
tem. Recent measurements in highly absorbing
systems like liquid Cs [4] and Cs50K50 alloy [6] that
liquid mercury can be studied on a similar accu-
racy level. Moreover, the presence of a rather high
incoherent contribution allows one to approach
also the self-dynamics of the system.

Most of the predictions of the liquid-metal dy-
namics, such as the persistence of well defined
modes outside the strict hydrodynamic region or
the occurrence of memory effects with a time scale
of the order of the collision time in high density
systems, have been provided by MD simulations
and have been tested by inelastic neutron and X-
ray scattering experiments. The simultaneous use
of these two techniques and the comparison of
experimental and numerical results allow a deeper
understanding of the microscopic mechanisms at
the basis of liquid-metal dynamics, the efficacy of
this comparison being strictly related to the choice
of a potential that reproduces in a realistic way the
experimental data available for the studied system.
Indeed, the reliability of MD findings depends on
the capability of the interatomic potential, used to
simulate the ion–ion interaction, in reproducing

the real system. We have developed a new simple
form for the ion–ion effective potential in liquid
mercury which depends only on average conduc-
tion electron density of the system and reproduces
quite well the static structure factor, the diffusion
coefficient and the sound velocity of our system in
a wide temperature and density range along the
liquid-vapor coexistence curve [16,17]. We have
performed large scale MD simulation, based on
this potential, to obtain the collective and self-
dynamics of liquid mercury to be compared with
the measured total dynamic structure factor.

2. Experimental results

The measurements on liquid mercury were car-
ried out at the three-axis spectrometer IN1 installed
at the hot source of the High Flux Reactor ILL in
Grenoble and the description of the experiment is
given in a recent work [18]. Here we remind that a
fixed final wave vector of 4.5 �AA�1 was selected in
order to obtain a final energy high enough to re-
duce the absorption cross-section of mercury as
much as possible and to get, at the same time, a
good energy resolution. The experimental setup
was carefully chosen to optimize the measurement.
High quality data were collected down to 1� scat-
tering angle. All the measurements were carried
out at 293 K on a 99.999 % pure mercury sample
with natural isotopic composition. The scattered
intensity from the sample was measured at seven
wave vector transfers Q, namely at Q ¼ 0:25, 0.3,
0.4, 0.6, 0.8, 1.0 and 1.2�AA�1. The experimental data
were corrected by applying the same procedure
successfully used in previous experiments [6,19].
The sample intensity, corrected for background
and multiple scattering, is shown in Fig. 1 versus
energy at four of the measured wave vectors. Con-
sidering that the elastic resolution obtained from
the vanadium measurement amounts to 1.16 meV,
the features observed in Fig. 1 are expected to be
related to the mercury dynamics. A close inspection
of Fig. 1 suggests a wave vector-dependent struc-
ture of the inelastic signal. In particular, the anal-
ysis of the low Q-region, enables one to infer the
velocity of the dispersive mode which turns out to
be of the order of 2100 m/s [18]. Such a value is
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much larger than the sound velocity in mercury at
293 K as measured by ultrasound spectroscopy
[20], namely 1470 m/s. Actually, anomalous dis-
persion has been often observed in metals [7,15,21],
but an impressively large effect as the present one
has been reported only in water [19], that is in a
profoundly different system. At high Q, a pro-
gressive merging of the collective mode signal into
a quasi-elastic signal is observed and the extension
of this quasi-elastic structure is well beyond the
resolution-limited central peak, which is present at
all wave vector transfer values.

3. MD simulation results

A large scale MD simulation, based on the
simple analytic model for the effective ion–ion

potential of liquid mercury presented in Ref [16],
was carried out. The quality of the proposed po-
tential had been previously tested against various
measured static quantities and over a wide range
of temperatures along the liquid-vapor coexisting
curve. The base assumption is that the potential of
mercury could, in a first approximation, be con-
structed by simply taking the sum of a long and a
short range part. The short range part, represent-
ing the repulsive interaction due to the overlap of
electron cores, was modeled by means of an in-
verse power law dependence, whereas the long
range part was taken as the asymptotic form of the
effective ion–ion interaction [22–25], screened by
the conduction electrons. The effective ion–ion
potential was therefore written as

V ðrÞ ¼ A
r12

þ B
cosð2kFr þ bÞ

r3
expð�kTFrÞ ð1Þ

where r is the ion–ion distance, 2kF is the diameter
of the Fermi sphere and kTF is the Thomas–Fermi
wave vector, i.e. the inverse of the Thomas–Fermi
screening length. A, B, and b are parameters to be
determined. The power of the repulsive short
range part is borrowed from the Lennard-Jones
potential of noble gases. An effective number of
electrons per atom equal to Z�, the effective ionic
charge, was assumed to evaluate the electron num-
ber density and hence kF and kTF. The parameters
A, B, b and Z� were optimized by fitting the ex-
perimental data of the static structure factor SðQÞ
[26,27], diffusion coefficient D [20] and (adiabatic)
sound velocity cS [28,29] of liquid mercury at room
temperature, namely 298 K (q ¼ 13:55 g cm�3), to
the corresponding classical MD results with the
proposed potential [16].

Standard NVE simulations of a system of
87 808 atoms were performed by using a cubic box
with periodic boundary conditions and leap-frog
algorithm to integrate the equations of motion.
Details of simulations are reported in a previous
paper [17]. The total dynamic structure factor
SðQ;xÞ was obtained from the power spectrum
(Welch method [30]) of the signal ranging from 0.1
to 1.2 �AA�1 and by taking an average over all pos-
sible Q directions. Well defined collective modes,
superimposed to a broad quasi-elastic contribu-
tion, are apparent [17].

Fig. 1. Dynamic structure factor SðQ; �hxÞ of liquid mercury as

a function of energy transfer at four values of wave vector

transfers. The experimental data (�) are also shown on a scale

expanded by a factor ten to emphasize the inelastic structures.

The full lines represent the curves calculated according to the

fitting model described in the text. At Q ¼ 0:3, 0.4 and 0.6 �AA�1

the inelastic contribution (DHO) is also shown, whereas at

Q ¼ 1:0 �AA�1 the two quasi-elastic (Lorentzian) contributions

are shown.

844 L.E. Bove et al. / Journal of Non-Crystalline Solids 307–310 (2002) 842–847



4. Discussion

Considering that the incoherent cross-section of
mercury is quite high as compared to the coherent
contribution at small Q, the experimental data are
better and more quantitatively analyzed by using
a flexible model to account for the self-dynamic
structure factor. As observed, the quasi-elastic
peak shows a rather sharp component and a
broader component which becomes dominant as Q
increases. Following this observation, we modeled
the dynamic structure factor using two Lorentzian
functions to describe the self-dynamic structure
factor and a damped harmonic oscillator to de-
scribe the coherent component. Therefore, the
following equation has been used to fit the exper-
imental dynamic structure factor:

SðQ;xÞ ¼ rinc=ð4pÞ
rinc=ð4pÞ þ b2

�hx=kBT
1� expð��hx=kBT Þ

� a0ðQÞ
p

C0ðQÞ
x2 þ C2

0ðQÞ

"
þ a1ðQÞ

p
C1ðQÞ

x2 þ C2
1ðQÞ

#

þ b2

rinc=ð4pÞ þ b2
acðQÞ

1� expð��hx=kBT Þ

� CcðQ;xÞ
½x2 � x2

cðQÞ

2 þ C2

cðQ;xÞ
; ð2Þ

where C0ðQÞ has been assumed to be equal to DQ2,
D being the self-diffusion constant [20], the dam-
ping function CcðQ;xÞ, which is always an odd
function of x, has been approximated by Cc �
ðQ;xÞ ¼ aQx and C1ðQÞ, xcðQÞ, a0ðQÞ, a1ðQÞ and
acðQÞ have been left as free parameters. As shown
in Fig. 1, the fit of the dynamic structure factor
using Eq. (2) turned out to be satisfactory at all the
wave vector transfers we measured. Looking at the
behavior of the free parameters of the fit we ob-
served that C1ðQÞ has a small, if any, Q depen-
dence, while xcðQÞ shows a rather linear trend up
to Q ¼ 0:6 �AA�1. Therefore, the fit was repeated
assuming C1 to be a constant and xcðQÞ ¼ c0Q, c0
being the collective mode velocity, using three non-
linear Q-independent parameters C1, c0 and a and
three amplitudes a0ðQÞ, a1ðQÞ and acðQÞ, which are
linear fitting parameters. We got the following
results for the Q-independent parameters: �hC1 ¼
2:0� 0:2 meV, �hc0 ¼ 13:8� 0:5 meV/�AA�1 and

�ha ¼ 9� 2 meV�AA. We found that the amplitude
a1ðQÞ is an increasing function of Q and acðQÞ is
almost constant in the region where the collective
modes can be fitted to the present data. Consid-
ering that there exists also a resolution-limited
quasi-elastic contribution, we think that this part
of the mercury dynamics deserves a properly de-
signed experiment. However, from the experi-
mental data analysis, we obtained an indication of
the presence of at least two time scales which
characterize the mercury self-dynamics. We ob-
tained a confirmation of this statement and a
deeper understanding of the fast time process from
MD simulations. To this aim we extracted the self-
intermediate scattering function FsðQ; tÞ from the
simulation at all the experimental wave vectors. In
Fig. 2 we show FsðQ; tÞ at Q ¼ 0:3 �AA�1 in the time
scale accessible to the experiment (�4 ps). Looking
at Fig. 2 we can see that FsðQ; tÞ shows an addi-
tional process, other than the usual free diffusion,
faster than the time window of the present exper-
iment. We extracted this additional contribution
modeling the self-intermediate scattering function
in the following simple way:

Fig. 2. Calculated self-intermediate scattering function at

Q ¼ 0:3 �AA�1 as a function of time (N), compared with a simple

free diffusion model (– – –) and with a two time model (- - -).

The short time contribution F nd
s is shown in the insert together

with the experimental resolution.
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FsðQ; tÞ ¼ ½1� a1ðQÞ
 exp½�C0ðQÞt
 þ a1ðQÞF nd
s ðtÞ;

ð3Þ

where the exponential term represents a free dif-
fusive process and the second one a faster Q-in-
dependent process, fitted to the simulation results,
whose time dependence is shown in the insert of
Fig. 2. This additional contribution can be roughly
approximated, in the time domain, by an expo-
nential function, with a decay time of the same
order as the experimental quasi-elastic contribu-
tion. In particular, we derived from the whole set
of simulation data the two parameters C0ðQÞ and
a1ðQÞ as a function of Q, thus obtaining that
the time dependence of the additional process is
Q independent while its strength is a function
of Q. Both C0ðQÞ and a1ðQÞ depend on Q2, as
shown in Fig. 3. In particular from the relationship
C0ðQÞ ¼ DQ2 (triangles), which describes a free
diffusion process, an estimate of the diffusion co-
efficient D was obtained and found to be in good
agreement with the one calculated from the
mean square ionic displacement by MD simula-
tion [16] (full line), thus confirming the internal
consistency of the calculations, and with the ex-
perimental one (dashed line). In Fig. 3 the values
of a1ðQÞ obtained from simulations are compared
with the fit results of the experimental data thus
showing as the additional contribution amplitude

is lower in the simulated system than in the real
one. On the other end, the amplitudes of the sim-
ulated and experimental contribution are compa-
rable.

5. Conclusion

As a conclusion, both the MD simulation and
the experiment suggest the existence of two time
scales in the self-dynamics of liquid mercury. In
particular, the value of �hC1 derived from the anal-
ysis of the experimental results indicates that there
exists a contribution which is as fast as 1 ps, in
agreement with the findings of the MD simula-
tions. This process is essentially Q-independent, so
that it should correspond to a localized diffusion
and not a free diffusion in real space. This short
time self-motion could be associated to the inter-
actions between an atom and the cage of its nearest
neighbors. This is confirmed by the behavior of
particle trajectories obtained from simulations. In
particular, the analysis of the displacements of a
selection of particles from their initial configura-
tion, shows that they are trapped for a time com-
parable with the decay time of the fast process in a
cage of 2.5 �AA, i.e. similar to the distance of first
neighbours in mercury, before following a simple
free diffusion.

Fig. 3. The two parameters C0ðQÞ (N) and a1ðQÞ (þ), obtained from MD simulation are shown versus Q2. In (a) the width of the free

diffusion process C0ðQÞ is compared with that calculated from the mean square ionic displacement [16] (––) and with the experimental

one (– – –). In (b) the amplitude of the short time process a1ðQÞ is compared with that obtained according to the fitting model of the

experimental data (). The experimental errors are smaller than symbols.
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